The nucleotide-binding sub-proteome of mustard chloroplasts and its involvement in plastid redox signaling / by Yvonne Schattschneider

The actual keen about redox signal development at the plastid photosynthetic apparatus, transmission and the reply to the signal was highlighted by the contribution of three review article to this work. Pfannschmidt et al. 2008 summarizes short and long term acclimation responses (STR and LTR respectively) to redox signals of the Plastoquinone (PQ) pool and the involvement of putative phosphorylation cascades and thioredoxins as well as the influence of the redox state on primary target genes in plastids and nucleus. Further on experimental approaches for the generation of a defined redox state at the photosynthetic electron transport (PET) chain was discussed. Dietzel et al. 2008 reviews the different types of retrograde signals between plastids and nucleus as well as the complexity and interaction of the signaling cascades and networks and in Pfalz et al. 2012 the environmental influences on gene expression and recent findings within plastid redox signaling were discussed. For a detailed investigation of the adaption of plastid gene expression responding to plastid redox signals the gene expression machinery of chloroplasts itself was studied. An experimental approach was used for the generation of a defined redox signal in mustard cotyledons, the following isolation of its chloroplasts and further on the nucleotide binding sub-proteome using heparin-Sepharose (HS) (Steiner et al. 2009; Schröter et al. 2010). The characterization and comparison of mustard cotyledons acclimated to redox signal inducing Light-qualities with Arabidopsis thaliana cotyledons was important for the integration of new findings within Sinapis alba into established models (Steiner et al. 2009). An effect on the transcriptional regulation of the two plastome-encoded genes psaAB and psbA was studied here concerning promoter recognition and specificity (Steiner et al. 2009). The impact of phosphorylation events on gene expression was surveyed and confirmed by determination of the phosphorylation state of the HS fractions, the endogenous kinase activity and the cooperative influence of kinase activity and thiol redox state on Chloroplast transcription (Steiner et al. 2009). HS proteins fractions contain a high degree of DNA and especially psaA and psbA binding proteins which were identified using mass spectrometry and Brassicales databases (Steiner et al. 2009; Schröter et al. 2010; Steiner et al. 2011). Special emphasis was on the analysis of the essential subunits of the plastid-encoded plastid RNA-polymerase (PEP) which was well to prepare by 2 dimensional (2D) blue native (BN) gel electrophoresis (Schröter et al. 2010; Steiner et al. 2011). The degree of proteins involved in gene expression was strongly increased by the use of a second chromatographic step with Phosphocellulose (PC) additional to HS (Schröter et al. 2014). Visualization and identification of this nucleotide binding sub-proteome was the aim of the last publication included into this work giving access to a precise view on the gene expression related proteome of mustard plastids (Schröter et al. 2014).

Saved in:
Person: Schattschneider, Yvonne [Author]
Corporate Author: Friedrich-Schiller-Universität Jena [Degree granting institution]
Format: Book
Publication:Jena, 2015
Printing place:Jena
Dissertation:Jena, Univ., Diss., 2015
Subjects:Photosyntheseapparat > Plastide > Redoxsystem > Signaltransduktion
Type of content:Hochschulschrift
Related resources:Erscheint auch als Online-Ausgabe: The nucleotide-binding sub-proteome of mustard chloroplasts and its involvement in plastid redox signaling
Physical description:V, 198, III Bl. : Ill., graph. Darst. ; 29,5 cm
Basic Classification: 42.41 Pflanzenphysiologie
42.13 Molekularbiologie